## Exercise 74

On May 7, 1992, the space shuttle *Endeavour* was launched on mission STS-49, the purpose of which was to install a new perigee kick motor in an Intelsat communications satellite. The table gives the velocity data for the shuttle between liftoff and the jettisoning of the solid rocket boosters.

- (a) Use a graphing calculator or computer to find the cubic polynomial that best models the velocity of the shuttle for the time interval  $t \in [0, 125]$ . Then graph this polynomial.
- (b) Find a model for the acceleration of the shuttle and use it to estimate the maximum and minimum values of the acceleration during the first 125 seconds.

| Event                           | Time (s) | Velocity (ft/s) |
|---------------------------------|----------|-----------------|
| Launch                          | 0        | 0               |
| Begin roll maneuver             | 10       | 185             |
| End roll maneuver               | 15       | 319             |
| Throttle to 89%                 | 20       | 447             |
| Throttle to 67%                 | 32       | 742             |
| Throttle to 104%                | 59       | 1325            |
| Maximum dynamic pressure        | 62       | 1445            |
| Solid rocket booster separation | 125      | 4151            |

## Solution

## Part (a)

Plot the given data and use Mathematica's FindFit function to obtain the cubic function that best fits the data.



## Part (b)

The model for acceleration is obtained by taking the derivative of the velocity.

$$a(t) = v'(t)$$

$$= \frac{d}{dt}(0.001461372681076514t^3 - 0.1155339182688391t^2 + 24.98169190809044t - 21.26872398287136)$$

$$= 0.001461372681076514(3t^2) - 0.1155339182688391(2t) + 24.98169190809044(1) - 21.26872398287136(0)$$

$$= 0.00438412t^2 - 0.231068t + 24.9817$$

To find the extreme values of a(t) on  $0 \le t \le 125$ , take the derivative of a(t).

$$a'(t) = \frac{d}{dt}(0.00438412t^2 - 0.231068t + 24.9817)$$
$$= 0.00438412(2t) - 0.231068(1) + 24.9817(0)$$
$$= 0.00876824t - 0.231068$$

Then set a'(t) = 0 and solve for t.

$$0.00876824t - 0.231068 = 0$$

$$t = \frac{0.231068}{0.00876824} \approx 26.3528 \text{ seconds}$$

t=26.3528 is within the interval  $0\leq t\leq 125,$  so evaluate the function here.

 $a(26.3528) = 0.00438412(26.3528)^2 - 0.231068(26.3528) + 24.9817 \approx 21.9371 \frac{\text{ft}}{\text{s}^2} \quad \text{(absolute minimum)}$ 

Evaluate the function at the endpoints.

$$a(0) = 0.00438412(0)^{2} - 0.231068(0) + 24.9817 = 24.9817 \frac{\text{ft}}{\text{s}^{2}}$$

$$a(125) = 0.00438412(125)^{2} - 0.231068(125) + 24.9817 = 64.6001 \frac{\text{ft}}{\text{s}^{2}} \qquad \text{(absolute maximum)}$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval  $0 \le t \le 125$ .



The graph of the acceleration function below illustrates these results.